COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, N.I.H., INTRAMURAL
Add like
Add dislike
Add to saved papers

Catechol-O-methyltransferase Val158Met modulation of prefrontal-parietal-striatal brain systems during arithmetic and temporal transformations in working memory.

Journal of Neuroscience 2007 December 6
Working memory (WM) is critically mediated by dopaminergic tuning of signal-to-noise in cortical neural assemblies. However, little is known about the distributed neuronal networks impacted by dopaminergic modulation in the component processes of WM. Here, we used the genotype of the Val158Met polymorphism in catechol-O-methyltransferase (COMT) as an index of relative cortical dopamine bioavailability and tuning efficiency, to examine the spatial and subprocess specificity by which dopaminergic modulation occurs within the prefrontal-parietal-striatal network during WM, thus empirically showing that dopamine plays key roles in updating and stabilizing new information at the neural systems level. In an event-related fMRI task dissociating component numerical WM subprocesses, baseline numerical size comparison engaged ventrolateral prefrontal cortical activation that correlated with COMT Val-allele load (COMT Val>Met), while performing arithmetic transformations further engaged this genotype effect in dorsolateral prefrontal cortex (DLPFC), as well as in parietal and striatal regions. Critically, additional temporal integration of information in WM disproportionately engaged greater COMT Val>Met effects only at DLPFC. COMT Val>Met effects were also observed in DLPFC during encoding of new information into WM, but not at its subsequent retrieval. Thus, temporal updating operations, but less so the retrieval of already encoded representations, engaged relatively specific dopaminergic tuning at the DLPFC. Manipulating and rapidly updating representations were sensitive to dopaminergic modulation of neural signaling in a larger prefrontal-parietal-striatal network. These findings add to the integration of dopaminergic signaling in basic cortical assemblies with their roles in specific human brain networks during the orchestration of information processing in WM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app