JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Low-dose 12-O-tetradecanoylphorbol-13-acetate enhances tumor necrosis factor related apoptosis-inducing ligand induced apoptosis in prostate cancer cells.

Clinical Cancer Research 2007 December 2
PURPOSE: Previously, we have shown that c-Fos/activator protein-1 (AP-1) promotes tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by repressing the antiapoptotic molecule c-FLIP(L). In this study, we investigated whether synthetic induction of c-Fos/AP-1 by 12-O-tetradecanoylphorbol-13-acetate (TPA) converts the phenotype of TRAIL-resistant prostate cancer cells to a TRAIL-sensitive phenotype in vitro and in vivo.

EXPERIMENTAL DESIGN: Low-dose TPA was used to determine whether LNCaP prostate cancer cells could be converted to a TRAIL-sensitive phenotype in in vitro and in vivo studies. We also assessed whether TPA enhancement of TRAIL-induced apoptosis varies between androgen-sensitive and androgen-insensitive prostate cancer cells and evaluated the role of TRAIL receptors, DR4 and DR5, in TPA-enhanced TRAIL-induced apoptosis.

RESULTS: We show that the combination of TRAIL with low-dose TPA has no effect on nonmalignant prostate epithelial cells; however, TPA up-regulates most AP-1 proteins and AP-1 activity, reduces c-FLIP(L), and potentiates TRAIL-induced apoptosis. We show that the combination of TPA + TRAIL is effective in promoting apoptosis in both hormone-sensitive LNCaP and hormone-insensitive LNCaP-C4-2 prostate cancer cells. Although TPA enhances the TRAIL-receptor 1 (DR4) level, sensitization of prostate cancer cells seems to be more dependent on TRAIL-receptor 2 (DR5) than TRAIL-receptor 1 levels. In vivo xenograft experiments suggest that TPA elevates the expression of c-Fos and reduces c-FLIP(L). Combination of TPA with TRAIL-receptor 2 agonist antibody, lexatumumab, effectively increases apoptosis and reduces LNCaP xenograft tumor burden.

CONCLUSIONS: TPA, when combined with the proapoptotic agent TRAIL, is effective in changing the phenotype of some TRAIL-resistant prostate cancer cells to a TRAIL-sensitive phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app