Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Parathyroid hormone treatment after myocardial infarction promotes cardiac repair by enhanced neovascularization and cell survival.

AIMS: An ongoing concept is that stem cells have the potential to regenerate the injured myocardium. In addition to direct vasorelaxing effects on the vasculature, which are mediated by an increased cAMP production leading to a decreased calcium influx in smooth muscle cells, parathyroid hormone (PTH) was recently shown to facilitate stem cell mobilization. Therefore, we analysed in a murine model of experimental myocardial infarction (MI) the influence of PTH treatment on survival, functional parameters, stem cell migration, and expression of vascular endothelial growth factor A (VEGF-A).

METHODS AND RESULTS: Mice (C57BL/6) were treated with PTH (80 microg/kg/d) for up to 14 days after coronary artery ligation. Functional and immunohistochemical analyses were performed at days 6 and 30 after MI. Stem cells and VEGF expression in the myocardium were analysed by FACS and qRT-PCR at day 2 after MI. PTH-treated animals revealed a significant improvement of post-MI survival and myocardial function that was related to a subsequent reduction of left ventricular wall thinning and scar extension. Infarcted hearts of PTH-treated mice revealed increased numbers of CD45(+)/CD34(+) progenitor cells as well as an upregulation of VEGF-A mRNA associated with increased neovascularization and cell survival.

CONCLUSIONS: PTH application after MI increases migration of angiogenic CD45(+)/CD34(+) progenitor cells to the ischaemic heart, which may attenuate ischaemic cardiomyopathy. As PTH is already used in patients with osteoporosis, our findings may have a direct impact on the initiation of clinical studies in patients with ischaemic heart disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app