Add like
Add dislike
Add to saved papers

Multiconfigurational self-consistent field and multireference internally contracted configuration interaction studies on the excited states of weakly bonded NO2 dimer (N2O4).

In this paper, the vertical excitation energies of total of 32 states of N(2)O(4) including the lowest two singlet states and two triplet states of each of the A(g), B(3u), B(2u), B(1g), B(1u), B(2g), B(3g), and A(u) symmetries were calculated at multiconfigurational self-consistent field (MCSCF) and the multireference internally contracted configuration interaction (MRCI) levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set. The potential energy curves of the eight singlet states(1 (1)A(g), 1 (1)B(3u), 1 (1)B(2u), 1 (1)B(1g), 1 (1)B(1u), 1 (1)B(2g), 1 (1)B(3g), and 1 (1)A(u)) and eight triplet states (1 (3)A(g), 1 (3)B(3u), 1 (3)B(2u), 1 (3)B(1g), 1 (3)B(1u), 1 (3)B(2g), 1 (3)B(3g), and 1 (3)A(u)) were calculated at MCSCF and MRCI levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set along the N-N distance. The vertical excitation energies of 1 (1)B(3u), 1 (1)B(2u), and 1 (1)B(1u) states with nonzero transition moment are 4.60 eV (269.6 nm), 6.06 eV (204.6 nm), and 7.71 eV (160.8 nm), respectively, at MRCI level of theory. The photodissociation asymptotics were assigned as NO(2)(X (2)A(1))+NO(2)(X (2)A(1)) for ground state 1 (1)A(g) and the 1 (3)B(1u) state, NO(2)(X (2)A(1))+NO(2)(1 (2)A(2)) for the 1 (1)B(1g), 1 (3)B(1g), 1 (1)A(u), and 1 (3)A(u) states, NO(2)(X (2)A(1))+NO(2)(1 (2)B(1)) for the 1 (1)B(3u), 1 (3)B(3u), 1 (1)B(2g), and 1 (3)B(2g) states, and NO(2)(X (2)A(1))+NO(2)(1 (2)B(2)) for the 1 (1)B(2u), 1 (3)B(2u), 1 (1)B(3g), and 1 (3)B(3g) states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app