JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nanostructured bulk copper fabricated by accumulative roll bonding.

In this study, we tried to fabricate the nanostructured bulk copper alloys by a severe plastic deformation process. The sheets of copper alloys (OFC, PMC90, and DLP) were heavily deformed to an equivalent strain of 6.4 by the accumulative roll-bonding (ARB) process. The microstructure and the mechanical property of the fabricated specimens were systematically investigated. The microstructure was finely subdivided with increasing the equivalent strain by the ARB process. The severely deformed copper alloys exhibited the ultrafine lamellar boundary structure where the mean lamella spacing was about 200 nm. The strength significantly increased with decreasing the lamella spacing in the ARB processed copper alloys. Especially, the tensile strength of the DLP alloys ARB processed by 8 cycles (the equivalent strain of 6.4) reached to 520 MPa, which was about three times higher than that of same materials with conventional grain size of 10-100 microm. On the other hand, the total elongation greatly dropped only by 1 ARB cycle corresponding to an equivalent strain of 0.8, which was around 3%. However, the total elongation increased again with increasing the number of the ARB cycle, and it reached to 10% after 8 cycles. The recovery of the total elongation could be recognized in all studied copper alloys. The obtained stress-strain curves showed that the improvement of the total elongation was caused by the increase in the post-uniform elongation. It can be concluded that the nanostructured copper alloys sheets having high strength without a large loss of ductility could be fabricated by the ARB process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app