JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Polysugar-stabilized Pd nanoparticles exhibiting high catalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene.

In this paper, we present a straightforward and environmentally friendly aqueous-phase synthesis of small Pd nanoparticles (approximately 2.4 nm under the best stabilization) by employing a "green", inexpensive, and biodegradable/biocompatible polysugar, sodium carboxymethylcellulose (CMC), as a capping agent. The Pd nanoparticles exhibited rather high catalytic activity (observed pseudo-first-order reaction kinetic rate constant, k(obs), is up to 828 L g(-1) min(-1)) for the hydrodechlorination of environmentally deleterious trichloroethene (TCE) in water. Fourier transform IR (FT-IR) spectra indicate that CMC molecules interact with the Pd nanoparticles via both carboxyl (-COO-) and hydroxyl (-OH) groups, thereby functioning to passivate the surface and suppress the growth of the Pd nanoparticles. Hydrodechlorination of TCE using differently sized CMC-capped Pd nanoparticles as catalyst was systematically investigated in this work. Both the catalytic activity (k(obs)) and the surface catalytic activity (turnover frequency, TOF) of these CMC-capped Pd nanoparticles for TCE degradation are highly size-dependent. This point was further verified by a comparison of the catalytic activities and surface catalytic activities of CMC-capped Pd nanoparticles with those of beta-D-glucose-capped Pd and neat Pd nanoparticles for TCE degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app