Journal Article
Multicenter Study
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Abnormal motor cortex excitability in congenital stroke.

Pediatric Research 2008 January
The aim of the present study was to investigate corticospinal and intracortical excitability in patients with congenital stroke. In adults, stroke sequelae reduce corticospinal excitability, as indicated by an elevated threshold for motor evoked potentials (MEP), and increase intracortical excitability, as indicated by reduced intracortical inhibition. Ten patients with pre- or perinatally acquired, unilateral cortico-subcortical infarctions in the middle cerebral artery territory were studied with single pulse transcranial magnetic stimulation (TMS) to measure motor threshold (MT) and with paired pulse TMS to study short interval intracortical inhibition (SICI) and intracortical facilitation (ICF). Eight healthy, age-matched subjects served as controls. MT over the affected hemisphere of patients compared with the dominant hemisphere of controls was significantly elevated, reflecting reduced corticospinal excitability, and SICI was significantly reduced, reflecting increased intracortical excitability. No such differences were found for ICF. Findings in patients with congenital stroke were comparable with adulthood stroke. Thus, similar assumptions can be made: reduced corticospinal excitability is probably a consequence of neuronal damage. Reduced intracortical inhibition might represent deficient inhibitory cortical properties or might reflect a compensational mechanism, dispositioning for use-dependent plasticity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app