COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Transforming growth factor-beta receptor antagonism attenuates myocardial fibrosis in mice with cardiac-restricted overexpression of tumor necrosis factor.

The mechanisms that are responsible for the development of myocardial fibrosis in inflammatory cardiomyopathy are unknown. We have previously generated lines of transgenic mice with cardiac-restricted overexpression of tumor necrosis factor (MHCsTNF mice), a pro-inflammatory cytokine. The MHCsTNF mice develop a heart failure phenotype that is characterized by progressive myocardial fibrosis, as well as increased levels transforming growth factor-beta (TGF-beta)(mRNA and protein. In order to determine whether TGF-beta-mediated signaling was responsible for the myocardial fibrosis observed in the MHCsTNF mice, we treated MHCsTNF and littermate control mice from 4 to 12 weeks of age with a novel orally available TGF-beta receptor antagonist (NP-40208). At the time of terminal study, myocardial collagen content was determined using the picrosirius red technique, and left ventricular (LV) systolic and diastolic function were determined using the Langendorff method. Treatment with NP-40208 resulted in a significant (P < 0.05) 65% decrease in nuclear translocation of Smad 2/3, a significant (P < 0.05), decrease in the heart-weight to body-weight ratio from 6.5 to 5.7, a approximately 37% decrease in fibrillar collagen content (P < 0.01) and a significant (P < 0.05) decrease in the LV chamber stiffness by approximately 25% in the MHCsTNF mice when compared to diluent-treated controls. Treatment with NP-40208 had no discernable effect on LV systolic function, nor any effect on cardiac myocyte size or fetal gene expression in the MHCsTNF mice. Taken together, these observations suggest that sustained pro-inflammatory signaling in the adult heart is associated with a pro-fibrotic phenotype that arises, at least in part, from TGF-beta-mediated signaling, with resultant activation of Smad 2/3, leading to increased myocardial fibrosis and increased LV diastolic chamber stiffness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app