JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Click chemistry for (18)F-labeling of RGD peptides and microPET imaging of tumor integrin alphavbeta3 expression.

The cell adhesion molecule integrin alpha vbeta 3 plays a key role in tumor angiogenesis and metastasis. A series of (18)F-labeled RGD peptides have been developed for PET of integrin expression based on primary amine reactive prosthetic groups. In this study, we report the use of the Cu(I)-catalyzed Huisgen cycloaddition, also known as a click reaction, to label RGD peptides with (18)F by forming 1,2,3-triazoles. Nucleophilic fluorination of a toluenesulfonic alkyne provided (18)F-alkyne in high yield (nondecay-corrected yield: 65.0 +/- 1.9%, starting from the azeotropically dried (18)F-fluoride), which was then reacted with an RGD azide (nondecay-corrected yield: 52.0 +/- 8.3% within 45 min including HPLC purification). The (18)F-labeled peptide was subjected to microPET studies in murine xenograft models. Murine microPET experiments showed good tumor uptake (2.1 +/- 0.4%ID/g at 1 h postinjection (p.i.)) with rapid renal and hepatic clearance of (18)F-fluoro-PEG-triazoles-RGD 2 ( (18)F-FPTA-RGD2) in a subcutaneous U87MG glioblastoma xenograft model (kidney 2.7 +/- 0.8%ID/g; liver 1.9 +/- 0.4%ID/g at 1 h p.i.). Metabolic stability of the newly synthesized tracer was also analyzed (intact tracer ranging from 75% to 99% at 1 h p.i.). In brief, the new tracer (18)F-FPTA-RGD2 was synthesized with high radiochemical yield and high specific activity. This tracer exhibited good tumor-targeting efficacy and relatively good metabolic stability, as well as favorable in vivo pharmacokinetics. This new (18)F labeling method based on click reaction may also be useful for radiolabeling of other biomolecules with azide groups in high yield.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app