JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Farnesoid x receptor ligands inhibit vascular smooth muscle cell inflammation and migration.

OBJECTIVE: The farnesoid X receptor/bile acid receptor (FXR; NR1H4) is a ligand-activated transcription factor that regulates bile acid and lipid homeostasis, and is highly expressed in enterohepatic tissue. FXR is also expressed in vascular tissue. We have investigated whether FXR regulates inflammation and migration in vascular smooth muscle cells.

METHODS AND RESULTS: The FXR target gene, small heterodimer partner (SHP), was induced in vascular smooth muscle cells after treatment with synthetic FXR ligands, GW4064, or 6alpha-ethyl-chenodeoxycholic acid. FXR ligands induced smooth muscle cell death and downregulated interleukin (IL)-1beta-induced inducible nitric oxide synthase and cyclooxygenase-2 expression. In addition, FXR ligands suppressed smooth muscle cell migration stimulated by platelet-derived growth factor-BB. Reporter gene assays showed that FXR ligands activated an FXR reporter gene and suppressed IL-1beta-induced nuclear factor (NF)-kappaB activation and iNOS in a manner that required functional FXR and SHP.

CONCLUSIONS: Our observations suggest that a FXR-SHP pathway may be a novel therapeutic target for vascular inflammation, remodeling, and atherosclerotic plaque stability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app