Add like
Add dislike
Add to saved papers

Blocking heat shock protein-90 inhibits the invasive properties and hepatic growth of human colon cancer cells and improves the efficacy of oxaliplatin in p53-deficient colon cancer tumors in vivo.

We recently showed that inhibition of heat shock protein 90 (Hsp90) decreases tumor growth and angiogenesis in gastric cancer through interference with oncogenic signaling pathways. However, controversy still exists about the antimetastatic potential of Hsp90 inhibitors. Moreover, in vitro studies suggested that blocking Hsp90 could overcome p53-mediated resistance of cancer cells to oxaliplatin. We therefore hypothesized that blocking oncogenic signaling with a Hsp90 inhibitor would impair metastatic behavior of colon cancer cells and also improve the efficacy of oxaliplatin in vivo. Human colon cancer cells (HCT116, HT29, and SW620) and the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) were used for experiments. In vitro, 17-DMAG substantially inhibited phosphorylation of epidermal growth factor receptor, c-Met, and focal adhesion kinase, overall resulting in a significant decrease in cancer cell invasiveness. Importantly, 17-DMAG led to an up-regulation of the transcription factor activating transcription factor-3, a tumor suppressor and antimetastatic factor, on mRNA and protein levels. In a cell death ELISA, 17-DMAG markedly induced apoptosis in both p53-wt and p53-deficient cells. In vivo, 17-DMAG significantly reduced tumor growth and vascularization. Furthermore, blocking Hsp90 reduced hepatic tumor burden and metastatic nodules in an experimental model of hepatic colon cancer growth. Importantly, combining oxaliplatin with 17-DMAG in vivo significantly improved growth inhibitory and proapoptotic effects on p53-deficient cells, compared with either substance alone. In conclusion, inhibition of Hsp90 abrogates the invasive properties of colon cancer cells and modulates the expression of the antimetastatic factor activating transcription factor-3. Hence, targeting Hsp90 could prove valuable for treatment of advanced colorectal cancer by effectively inhibiting colon cancer growth and hepatic metastasis and improving the efficacy of oxaliplatin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app