JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

KCl cotransporter-3 down-regulates E-cadherin/beta-catenin complex to promote epithelial-mesenchymal transition.

Cancer Research 2007 November 16
The potassium chloride cotransporter (KCC) is a major determinant of osmotic homeostasis and plays an emerging role in tumor biology. Here, we investigate if KCC is involved in the regulation of epithelial-mesenchymal transition (EMT), a critical cellular event of malignancy. E-cadherin and beta-catenin colocalize in the cell-cell junctions, which becomes more obvious in a time-dependent manner by blockade of KCC activity in cervical cancer SiHa and CaSki cells. Real-time reverse transcription-PCR on the samples collected from the laser microdissection indicates that KCC3 is the most abundant KCC isoform in cervical carcinoma. The characteristics of EMT appear in KCC3-overexpressed, but not in KCC1- or KCC4-overexpressed cervical cancer cells, including the elongated cell shape, increased scattering, down-regulated epithelial markers (E-cadherin and beta-catenin), and up-regulated mesenchymal marker (vimentin). Some cellular functions are enhanced by KCC3 overexpression, such as increased invasiveness and proliferation, and weakened cell-cell association. KCC3 overexpression decreases mRNA level of E-cadherin. The promoter activity assays of various regulatory sequences confirm that KCC3 expression is a potent negative regulator for human E-cadherin gene expression. The proteosome inhibitor restores the decreased protein abundance of beta-catenin by KCC3 overexpression. In the surgical specimens of cervical carcinoma, the decreased E-cadherin amount was accompanied by the increased KCC3 abundance. Vimentin begins to appear at the invasive front and becomes significantly expressed in the tumor nest. In conclusion, KCC3 down-regulates E-cadherin/beta-catenin complex formation by inhibiting transcription of E-cadherin gene and accelerating proteosome-dependent degradation of beta-catenin protein. The disruption of E-cadherin/beta-catenin complex formation promotes EMT, thereby stimulating tumor progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app