JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Chimeric NKG2D modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways.

Cancer Research 2007 November 16
In this study, the efficacy and mechanisms of chimeric NKG2D receptor (chNKG2D)-modified T cells in eliminating NKG2D ligand-positive RMA/Rae1 lymphoma cells were evaluated. Intravenous injection of RMA/Rae1 cells led to significant tumor formation in spleens and lymph nodes within 2 weeks. Adoptive transfer of chNKG2D-modified T cells after tumor injection significantly reduced tumor burdens in both spleens and lymph nodes, and prolonged the survival of tumor-bearing mice. Multiple treatments with chNKG2D T cells resulted in long-term tumor-free survival. Moreover, these long-term survivors were resistant to rechallenge with RMA tumor cells (NKG2D ligand-negative), and their spleen and lymph node cells produced IFN-gamma in response to RMA but not to other tumors in vitro, indicating immunity against RMA tumor antigens. ChNKG2D T cell-derived IFN-gamma and granulocyte-macrophage colony-stimulating factor, but not perforin (Pfp), tumor necrosis factor-related apoptosis-inducing ligand, or Fas ligand (FasL) alone were critical for in vivo efficacy. T cells deficient in both Pfp and FasL did not kill NKG2D ligand-positive RMA cells in vitro. Adoptive transfer of Pfp(-/-)FasL(-/-) chNKG2D T cells had reduced in vivo efficacy, indicating that chNKG2D T cells used both mechanisms to attack RMA/Rae1 cells. Taken together, these results indicate that chNKG2D T-cell-mediated therapeutic effects are mediated by both cytokine-dependent and cytotoxic mechanisms in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app