Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses.

UNLABELLED: The amino acid O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) has been shown to be a useful tracer for brain tumor imaging. Experimental studies demonstrated no uptake of (18)F-FET in inflammatory cells but increased uptake has been reported in single cases of human brain abscesses. To explore this inconsistency, we investigated the uptake of (18)F-FET in comparison with that of L-[methyl-(3)H]methionine ((3)H-MET) and D-(3)H-deoxyglucose ((3)H-DG) in brain and calf abscesses in rats.

METHODS: Abscesses were induced in the brain (n = 9) and calf (n = 5) of Fisher CDF rats after inoculation of Staphylococcus aureus. Five days later, (18)F-FET and (3)H-MET (n = 10) or (18)F-FET and (3)H-DG (n = 4) were injected intravenously. One hour after injection the rats were sacrificed, and the brain or calf muscle was investigated using dual-tracer autoradiography. Lesion-to-background ratios (L/B) and standardized uptake values (SUVs) were calculated. The autoradiograms were compared with histology and immunostaining for glial fibrillary acidic protein (GFAP), CD68 for macrophages, and CD11b for microglia.

RESULTS: (18)F-FET uptake in the area of macrophage infiltration and activated microglia at the rim of the brain abscesses was low (L/B, 1.5 +/- 0.4). In contrast, high uptake was observed for (3)H-MET as well as for (3)H-DG (L/B, 4.1 +/- 1.1 for (3)H-MET vs. 3.1 +/- 1.5 for (3)H-DG; P < 0.01 vs. (18)F-FET). Results for calf abscesses were similar. In the vicinity of the brain abscesses, slightly increased uptake was noted for (18)F-FET (L/B, 1.8 +/- 0.3) and (3)H-MET (L/B, 1.8 +/- 0.4), whereas (3)H-DG distribution was normal (L/B, 1.2 +/- 0.2). Anti-GFAP immunofluorescence showed a diffuse astrocytosis in those areas.

CONCLUSION: Our results demonstrate that there is no accumulation of (18)F-FET in macrophages and activated microglia in experimental brain abscesses, whereas (3)H-MET and (3)H-DG exhibit high uptake in these cells. Thus, the specificity of (18)F-FET for gliomas may be superior to that (3)H-MET and (3)H-DG. Increased (18)F-FET uptake in human brain abscesses appears to be related to reactive astrocytosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app