Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma

Ulrike Heider, Ivana von Metzler, Martin Kaiser, Marleen Rosche, Jan Sterz, Susanne Rötzer, Jessica Rademacher, Christian Jakob, Claudia Fleissner, Ulrike Kuckelkorn, Peter-Michael Kloetzel, Orhan Sezer
European Journal of Haematology 2008, 80 (2): 133-42

OBJECTIVES: Mantle cell lymphoma (MCL) is an incurable B cell lymphoma, and novel treatment strategies are urgently needed. We evaluated the effects of combined treatment with the proteasome inhibitor bortezomib and the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) on MCL. Bortezomib acts by targeting the proteasome, and--among other mechanisms--results in a reduced nuclear factor-kappa B (NF-kappaB) activity. HDACi promote histone acetylation, and also interfere with NF-kappaB signaling.

METHODS: Human MCL cell lines (JeKo-1, Granta-519 and Hbl-2) were exposed to bortezomib and/or SAHA. Cell viability and apoptosis were quantified by the MTT and annexin-V assay, respectively. Reactive oxygen species (ROS) were analyzed using the fluorophore H2DCFDA. In addition, activated caspases, proteasome- and NF-kappaB activity were quantified.

RESULTS: Combined incubation with bortezomib and SAHA resulted in synergistic cytotoxic effects, as indicated by combination index values <1 using the median effect method of Chou and Talalay. The combination of both inhibitors led to a strong increase in apoptosis as compared to single agents and was accompanied by enhanced ROS generation, while each agent alone only modestly induced ROS. The free radical scavenger N-acetyl-L-cysteine blocked the ROS generation and reduced the apoptosis significantly. In addition, coexposure of bortezomib and SAHA led to increased caspase-3, -8 and -9 activity, marked reduction of proteasome activity and decrease of NF-kappaB activity.

CONCLUSIONS: This is the first report giving evidence that SAHA and bortezomib synergistically induce apoptosis in MCL cells. These data build the framework for clinical trials using combined proteasome and histone deacetylase inhibition in the treatment of MCL.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"