CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Phosphocreatine kinetics in the calf muscle of patients with bilateral symptomatic peripheral arterial disease during exhaustive incremental exercise.

PURPOSE: To investigate the relationship between the atherosclerotic lesion load determined on magnetic resonance angiography (MRA) and phosphocreatine (PCr) kinetics during incremental, exhaustive calf exercise in patients with bilateral, symptomatic peripheral arterial disease (PAD).

PROCEDURES: Using a 1.5 Tesla MR scanner, 26 patients with bilateral symptomatic PAD and 24 healthy male controls underwent serial phosphorus-31 MR spectroscopy (31P MRS) during incremental exercise at 2, 3, 4, and 5 Watts. For each increment and recovery, PCr time constants, amplitudes of PCr changes and pH values were calculated from the MR spectra. In patients, the run-off resistance (ROR) was determined on MRA.

RESULTS: The patients exhibited significantly (p
CONCLUSIONS: The correlation between PCr on-kinetics and end-increment pH values might indicate remodelling processes within the muscle that probably affect mitochondrial performance, diffusion of oxygen, and muscle fiber distribution. These parameters could be improved by exercise training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app