Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Bcl-xL augmentation potentially reduces ischemia/reperfusion induced proximal and distal tubular apoptosis and autophagy.

Transplantation 2007 November 16
BACKGROUND: Apoptosis and autophagy may contribute to cell homeostasis in the kidney subjected to ischemia/reperfusion injury via mitochondrial injury. Ischemia/reperfusion induces differential sensitivity between proximal and distal tubules via a dissociated Bcl-xL expression. We hypothesized Bcl-xL augmentation in the proximal and distal tubules may potentially reduce ischemia/reperfusion induced renal dysfunction.

METHODS: We augmented Bcl-xL protein expression in the kidney with intrarenal adenoviral bcl-xL gene transfer and evaluated the potential effect of Bcl-xL augmentation on ischemia/reperfusion induced renal oxidative stress, apoptosis, and autophagy in the rat.

RESULTS: Intrarenal arterial Adv-bcl-xL administration augmented maximal Bcl-xL protein expression of rat kidney after 7 days of transfection. The primary location of Bcl-xL augmentation was found in proximal and distal tubules, but not in glomeruli. Ischemia/reperfusion increased mitochondrial cytochrome C release, renal O2(-*) level and renal 3-nitrosine and 4-hydroxyneonal accumulation, potentiated tubular apoptosis and autophagy, including increase in microtubule-associated protein 1 light chain 3 (LC-3) and Beclin-1 expression, Bax/Bcl-xL ratio, caspase 3 expression and poly-(ADP-ribose)-polymerase fragments, and subsequent proximal and distal tubular apoptosis/autophagy. However, Adv-bcl-xL administration significantly reduced ischemia/reperfusion enhanced mitochondrial cytochrome C release, O2(-*) production, 3-nitrotyrosine and 4-hydroxynonenal accumulation, Beclin-1 expression, Bax/Bcl-xL ratio, and proximal and distal tubular apoptosis/autophagy, consequently improving renal dysfunction. Further study showed that Bcl-xL augmentation was more efficiently than Bcl-2 augmentation in amelioration of ischemia/reperfusion induced proximal and distal tubular apoptosis and renal dysfunction.

CONCLUSIONS: Our results suggest that Adv-bcl-xL gene transfer significantly improves ischemia/reperfusion-induced renal dysfunction via the downregulation of renal tubular apoptosis and autophagy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app