Add like
Add dislike
Add to saved papers

Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells.

Water Research 2008 March
The reduction of oxygen at the cathode and the diffusion of protons from the anode to the cathode are currently perceived as two major bottlenecks of microbial fuel cells (MFCs). To address these issues, we have designed an MFC configuration in which the effluent of an acetate-fed anode was used as a feed for an aerated, biocatalysed cathode. The development of a cathodic biofilm achieved a four-fold increase of the current output compared with the non-catalysed graphite cathode, while the pH variation in the cathode compartment was reduced due to the additional transfer of protons via the liquid stream. The sequential anode-cathode configuration also provided for chemical oxygen demand (COD) polishing at the cathode by heterotrophic bacteria, with overall acetate removal consistently greater than 99%. The anode achieved an organic substrate removal of up to 2.45kg COD/m(3) of anode liquid volume per day, at Coulombic efficiencies of 65-95%. Electron balances at the cathode revealed that the main cathodic process was oxygen reduction to water with no significant Coulombic losses. The maximal power output during polarization was 110W/m(3) cathode liquid volume. The process could be operated in a stable way during more than 9 months of continuous operation. Excessive organic loading to the cathode should be avoided as it can reduce the long-term performance through the growth of heterotrophic bacteria.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app