COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

The role of the CB1 cannabinoid receptor and its endogenous ligands, anandamide and 2-arachidonoylglycerol, in amphetamine-induced behavioural sensitization.

Cannabinoid receptors and their endogenous ligands (endocannabinoids) have been implicated in cocaine and amphetamine reward. Their role in psychostimulant-induced behavioural sensitization still has to be determined. The purpose of the present study was, for one, to compare the effects of a pharmacological and genetic manipulation of CB(1) cannabinoid receptors on amphetamine-induced locomotor sensitization in mice, and, secondly, to quantify the concentration of anandamide and 2-arachidonoylglycerol in different forebrain areas of behaviourally sensitized animals. The results can be summarized as follows: CB(1) knockout mice failed to sensitize to the locomotor stimulant effects of amphetamine. On the contrary, administration of the CB(1) receptor antagonist SR141716A (rimonabant; 3mg/kg; i.p.) increased amphetamine sensitization in wild-type animals, indicating that the difference between CB(1) knockouts and SR141716A treated animals could be due to the 'chronic' versus 'acute' loss of CB(1) receptor function, or, alternatively, that SR141716A could exert pharmacological effects beyond its proposed CB(1) antagonistic action. Furthermore, sensitized wild-type mice and animals, which had received a single amphetamine injection on the challenge day, both had increased anandamide concentrations in the dorsal striatum and decreased anandamide levels in the ventral striatum, comprising nucleus accumbens. 2-Arachidonoylglycerol levels were decreased in the ventral striatum of sensitized animals only. Together, these findings suggest that prolonged activation of dopamine receptors could alter endocannabinoid levels and support the proposed involvement of the CB(1) receptor in amphetamine sensitization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app