Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Site-specific effects of transcranial direct current stimulation on sleep and pain in fibromyalgia: a randomized, sham-controlled study.

OBJECTIVE: To investigate whether active anodal transcranial direct current stimulation (tDCS) (of dorsolateral prefrontal cortex [DLPFC] and primary motor cortex [M1]) as compared to sham treatment is associated with changes in sleep structure in fibromyalgia.

METHODS: Thirty-two patients were randomized to receive sham stimulation or active tDCS with the anode centered over M1 or DLPFC (2 mA, 20 minutes for five consecutive days). A blinded evaluator rated the clinical symptoms of fibromyalgia. All-night polysomnography was performed before and after five consecutive sessions of tDCS.

RESULTS: Anodal tDCS had an effect on sleep and pain that was specific to the site of stimulation: such as that M1 and DLPFC treatments induced opposite effects on sleep and pain, whereas sham stimulation induced no significant sleep or pain changes. Specifically, whereas M1 treatment increased sleep efficiency (by 11.8%, P = 0.004) and decreased arousals (by 35.0%, P = 0.001), DLPFC stimulation was associated with a decrease in sleep efficiency (by 7.5%, P = 0.02), an increase in rapid eye movement (REM) and sleep latency (by 47.7%, P = 0.0002, and 133.4%, P = 0.02, respectively). In addition, a decrease in REM latency and increase in sleep efficiency were associated with an improvement in fibromyalgia symptoms (as indexed by the Fibromyalgia Impact Questionnaire). Finally, patients with higher body mass index had the worse sleep outcome as indexed by sleep efficiency changes after M1 stimulation.

INTERPRETATION: Our findings suggest that one possible mechanism to explain the therapeutic effects of tDCS in fibromyalgia is via sleep modulation that is specific to modulation of primary M1 activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app