JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain.

High-mobility group box-1 (HMGB1) was originally identified as a ubiquitously expressed, abundant nonhistone DNA-binding protein. Recently, it was found to act as a cytokine-like mediator of delayed endotoxin lethality and of acute lung injury. Previously, we reported that HMGB1 is massively released extracellularly and plays a cytokine-like function in the postischemic brain. In the present study, we examined the expression profile and cellular distribution of HMGB1 in rat brain after transient focal cerebral ischemia. The expression of HMGB1 in infarction areas in the ipsilateral sides gradually declined over 2 days after 1 hr of middle cerebral artery occlusion (MCAO) to below the basal level. However, after 3 days of reperfusion, HMGB1 level increased to above the basal level, especially in infarction cores, and this delayed induction was then maintained for several days. Immunohistochemistry using a polyclonal antibody against HMGB1 revealed its detailed expression pattern and subcellular localization in the postischemic brain. HMGB1 was found to be widely expressed throughout the normal brain and to be localized to the nuclei of almost all neurons and oligodendrocyte-like cells. After 1 hr of MCAO, HMGB1 immediately translocated from the neuron nuclei to the cytoplasm and subsequently was depleted from neurons during the excitotoxicity-induced acute damaging process. Moreover, beginning 2 days after reperfusion, HMGB1 was notably induced in activated microglia, astrocytes, and in microvascular structures, and these delayed gradual inductions were sustained for several days. These findings suggest that HMGB1 functions as a cytokine-like mediator in a paracrine and autocrine manner in the postischemic brain.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app