Regeneration-enhancing effects of EphA4 blocking peptide following corticospinal tract injury in adult rat spinal cord

Jez Fabes, Patrick Anderson, Caroline Brennan, Stephen Bolsover
European Journal of Neuroscience 2007, 26 (9): 2496-505
Spinal cord injury often leads to permanent incapacity because long axons cannot regenerate in the CNS. Eph receptors inhibit axon extension through an effect on the actin cytoskeleton. We have previously reported that after injury EphA4 appears at high levels in stumps of corticospinal axons, while a cognate ligand, ephrinB2, is upregulated at the lesion site so as to confine the injured axons. In this study we have infused lesioned spinal cords with a peptide antagonist of EphA4. In treated animals the retrograde degeneration that normally follows corticospinal tract injury is absent. Rather, corticospinal tract axons sprout up to and into the lesion centre. In a behavioural test of corticospinal tract function, peptide treatment substantially improved recovery relative to controls. These results suggest that blocking EphA4 is likely to contribute to a future successful clinical treatment for spinal cord injury.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"