JOURNAL ARTICLE

Pitavastatin, an HMG-CoA reductase inhibitor, exerts eNOS-independent protective actions against angiotensin II induced cardiovascular remodeling and renal insufficiency

Shusuke Yagi, Ken-ichi Aihara, Yasumasa Ikeda, Yuka Sumitomo, Sumiko Yoshida, Takayuki Ise, Takashi Iwase, Kazue Ishikawa, Hiroyuki Azuma, Masashi Akaike, Toshio Matsumoto
Circulation Research 2008 January 4, 102 (1): 68-76
17967781
Angiotensin II (Ang II) plays a pivotal role in cardiovascular remodeling leading to hypertension, myocardial infarction, and stroke. Pitavastatin, an HMG-CoA reductase inihibitor, is known to have pleiotropic actions against the development of cardiovascular remodeling. The objectives of this study were to clarify the beneficial effects as well as the mechanism of action of pitavastatin against Ang II-induced organ damage. C57BL6/J mice at 10 weeks of age were infused with Ang II for 2 weeks and were simultaneously administered pitavastatin or a vehicle. Pitavastatin treatment improved Ang II-induced left ventricular hypertrophy and diastolic dysfunction and attenuated enhancement of cardiac fibrosis, cardiomyocyte hypertrophy, coronary perivascular fibrosis, and medial thickening. Ang II-induced oxidative stress, cardiac TGFbeta-1 expression, and Smad 2/3 phosphorylation were all attenuated by pitavastatin treatment. Pitavastatin also reduced Ang II-induced cardiac remodeling and diastolic dysfunction in eNOS-/- mice as in wild-type mice. In eNOS-/- mice, the Ang II-induced cardiac oxidative stress and TGF-beta-Smad 2/3 signaling pathway were enhanced, and pitavastatin treatment attenuated the enhanced oxidative stress and the signaling pathway. Moreover, pitavastatin treatment reduced the high mortality rate and improved renal insufficiency in Ang II-treated eNOS-/- mice, with suppression of glomerular oxidative stress and TGF-beta-Smad 2/3 signaling pathway. In conclusion, pitavastatin exerts eNOS-independent protective actions against Ang II-induced cardiovascular remodeling and renal insufficiency through inhibition of the TGF-beta-Smad 2/3 signaling pathway by suppression of oxidative stress.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17967781
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"