JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

An efficient RNA-cleaving DNA enzyme can specifically target the 5'-untranslated region of severe acute respiratory syndrome associated coronavirus (SARS-CoV).

BACKGROUND: The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. We report the use of DNAzyme (catalytic DNA) to target the 5'-untranslated region (5'UTR) of a highly conserved fragment in the SARS genome as an approach to suppression of SARS-CoV replication. A mono-DNA enzyme (Dz-104) possessing the 10-23 catalytic motif was synthesized and tested both in vitro and in cell culture.

MATERIALS AND METHODS: SARS-CoV total RNA was isolated, extracted from the SARS-CoV-WHU strain and converted into cDNA. We designed a RNA-cleaving 10-23 DNAzyme targeting at the loop region of the 5'UTR of SARS-CoV. The designed DNAzyme, Dz-104, and its mutant version, Dz-104 (mut), as a control consist of 9 + 9 arm sequences with a 10-23 catalytic core. In vitro cleavage was performed using an in vitro transcribed 5'UTR RNA substrate. A vector containing a fused 5'UTR and enhanced green fluorescent protein (eGFP) was co-transfected with the DNAzyme into E6 cells and the cells expressing eGFP were visualized with fluorescence microscopy and analyzed by fluorescence-activated cell sorting (FACS).

RESULTS AND CONCLUSIONS: Our results demonstrated that this DNAzyme could efficiently cleave the SARS-CoV RNA substrate in vitro and inhibit the expression of the SARS-CoV 5'UTR-eGFP fusion RNA in mammalian cells. This work presents a model system to rapidly screen effective DNAzymes targeting SARS and provides a basis for potential therapeutic use of DNA enzymes to combat the SARS infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app