JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

NOM1 targets protein phosphatase I to the nucleolus.

Protein phosphatase I (PP1) is an essential eukaryotic serine/threonine phosphatase required for many cellular processes, including cell division, signaling, and metabolism. In mammalian cells there are three major isoforms of the PP1 catalytic subunit (PP1alpha, PP1beta, and PP1gamma) that are over 90% identical. Despite this high degree of identity, the PP1 catalytic subunits show distinct localization patterns in interphase cells; PP1alpha is primarily nuclear and largely excluded from nucleoli, whereas PP1gamma and to a lesser extent PP1beta concentrate in the nucleoli. The subcellular localization and the substrate specificity of PP1 catalytic subunits are determined by their interaction with targeting subunits, most of which bind PP1 through a so-called "RVXF" sequence. Although PP1 targeting subunits have been identified that direct PP1 to a number of subcellular locations and/or substrates, no targeting subunit has been identified that localizes PP1 to the nucleolus. Identification of nucleolar PP1 targeting subunit(s) is important because all three PP1 isoforms are included in the nucleolar proteome, enzymatically active PP1 is present in nucleoli, and PP1gamma is highly concentrated in nucleoli of interphase cells. In this study, we identify NOM1 (nucleolar protein with MIF4G domain 1) as a PP1-interacting protein and further identify the NOM1 RVXF motif required for its binding to PP1. We also define the NOM1 nucleolar localization sequence. Finally, we demonstrate that NOM1 can target PP1 to the nucleolus and show that a specific NOM1 RVXF motif and the NOM1 nucleolar localization sequence are required for this targeting activity. We therefore conclude that NOM1 is a PP1 nucleolar targeting subunit, the first identified in eukaryotic cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app