JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development of a finite element model of female foot for high-heeled shoe design.

BACKGROUND: Wearing high-heeled shoes may produce deleterious effects on the musculoskeletal system while elevation of the shoe heel with arch insole insert is used as a treatment strategy for plantar fasciitis. Due to limitations of the experimental approaches, direct measurements of internal stress/strain of the foot are impossible or invasive. This study aims at developing a finite element model for evaluating the biomechanical effects of high-heeled support on the ankle-foot complex.

METHODS: A 3D anatomically detailed FE model of the female foot and ankle together with a high-heeled support was developed and used to investigate the plantar contact pressure and internal loading responses of the bony and soft tissue structures of the foot with varying heel heights during simulated balanced standing.

FINDINGS: In the balanced standing position with high-heeled support, a pronounced increase in von Mises stress at the first metatarsophalangeal (MTP) joint was predicted. The strain on plantar fascia decreased compared to the flat horizontal support and valgus deformity of the hallux was not significant.

INTERPRETATION: The increased stress in forefoot especially at the first MTP segment during prolonged high-heeled standing may contribute to progressive hallux valgus (HV) deformity. However, the reduced tensile strain in the plantar fascia with heel elevation may help relieve plantar fasciitis related pain and inflammation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app