JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Pharmacogenetics of glucose-lowering drug treatment: a systematic review.

Intensive blood glucose lowering can significantly reduce the risk of micro- and macrovascular complications in patients with diabetes mellitus. However, 30% of all treated patients do not achieve optimal blood glucose levels. Genetic factors may influence the response to glucose-lowering medication. A search of MEDLINE-indexed literature published between January 1966 and July 2007 revealed 37 studies reporting data on genetic polymorphisms and response to glucose-lowering drugs. Most studies involving cytochrome P450 (CYP) genes had small sample sizes (21 studies <50 subjects) and were among healthy volunteers. Multiple studies indicated that the CYP2C9 *3 allele (Ile359Leu polymorphism) was associated with decreased clearance of sulfonylurea drugs. Supporting this, one study reported an increased insulin secretion in CYP2C9*3 allele carriers when using the sulfonylurea agent glyburide. The CYP2C9*3 allele was also associated with a decreased clearance of meglitinides, whereas the CYP2C8*3 (Arg139Lys; Lys399Arg) variant increased the clearance of meglitinides. Polymorphisms in genes encoding the inwardly rectifying potassium channel Kir6.2 (KCNJ11) and the insulin receptor substrate-1 (IRS1) were reported to be associated with an increased risk of (secondary) failure to respond to sulfonylurea therapy. A significant decrease in fasting plasma glucose and hemoglobin A(1c) (HbA(1c)) in response to rosiglitazone was seen in subjects carrying the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma (PPARG) gene. Conversely, carriers of this polymorphism also had a higher conversion to diabetes mellitus when treated with acarbose; this effect was also seen in adiponectin (ADIPOQ) gene polymorphism carriers. Future studies with adequate sample sizes in which several SNPs in multiple candidate genes are genotyped in patients with diabetes should provide reliable information on genetic variants and response to glucose-lowering drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app