Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway.

Gene 2007 December 16
Phytic acid, myo-inositol-hexakisphosphate (InsP(6)), is a storage form of phosphorus in plants. Despite many physiological investigations of phytic acid accumulation and storage, little is known at the molecular level about its biosynthetic pathway in plants. Recent work has suggested two pathways. One is an inositol lipid-independent pathway that occurs through the sequential phosphorylation of 1D-myo-inositol 3-phosphate (Ins(3)P). The second is a phospholipase C (PLC)-mediated pathway, in which inositol 1,4,5-tris-phosphate (Ins(1,4,5)P(3)) is sequentially phosphorylated to InsP(6). We identified 12 genes from rice (Oryza sativa L.) that code for the enzymes that may be involved in the metabolism of inositol phosphates. These enzymes include 1D-myo-inositol 3-phosphate synthase (MIPS), inositol monophosphatase (IMP), inositol 1,4,5-tris-phosphate kinase/inositol polyphosphate kinase (IPK2), inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1), and inositol 1,3,4-triskisphosphate 5/6-kinase (ITP5/6K). The quantification of absolute amounts of mRNA by real-time RT-PCR revealed the unique expression patterns of these genes. Outstanding up-regulation of the four genes, a MIPS, an IPK1, and two ITP5/6Ks in embryos, suggested that they play a significant role in phytic acid biosynthesis and that the lipid-independent pathway was mainly active in developing seeds. On the other hand, the up-regulation of a MIPS, an IMP, an IPK2, and an ITP5/6K in anthers suggested that a PLC-mediated pathway was active in addition to a lipid-independent pathway in the anthers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app