JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modelling cardiac fibroblasts: interactions with myocytes and their impact on impulse propagation.

AIMS: Existence of myocyte-fibroblast coupling in the human heart is still a controversial question. This study aims at investigating in a biophysical model how much coupling would be necessary to perturb significantly the electrical propagation of the cardiac impulse.

METHODS AND RESULTS: A one-dimensional model representing a strand of myocytes covered by a layer of fibroblasts was formulated by reinterpreting the coupled myocyte-fibroblast system as a single unit and connecting these units using a monodomain approach. The myocyte membrane kinetics was described by the Bondarenko mouse cell model and the fibroblast response was based on an experimentally measured current-voltage curve and took into account the delayed activation of that current. Conduction and maximal upstroke velocities were reported for different fibroblast densities and myocyte-fibroblast coupling strengths during paced rhythm. A reduction in conduction and maximum upstroke velocities was observed for increasing coupling and fibroblast density, in agreement with cell culture experiments. This effect was because of an increase in the myocyte resting potential and of the fibroblasts acting as a current sink. At least 10 fibroblasts with capacitance 4.5 pF had to be connected to each myocyte with capacitance 153.4 pF to slow down the conduction by >10%.

CONCLUSION: Coupling with fibroblasts affects the myocyte resting potential and the impulse propagation, but microstructural changes and myocyte decoupling are needed to explain slow conduction in fibrotic tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app