JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Copper incorporation into recombinant CotA laccase from Bacillus subtilis: characterization of fully copper loaded enzymes.

The copper content of recombinant CotA laccase from Bacillus subtilis produced by Escherichia coli cells is shown to be strongly dependent on the presence of copper and oxygen in the culture media. In copper-supplemented media, a switch from aerobic to microaerobic conditions leads to the synthesis of a recombinant holoenzyme, while the maintenance of aerobic conditions results in the synthesis of a copper-depleted population of proteins. Strikingly, cells grown under microaerobic conditions accumulate up to 80-fold more copper than aerobically grown cells. In vitro copper incorporation into apoenzymes was monitored by optical and electron paramagnetic resonance (EPR) spectroscopy. This analysis reveals that copper incorporation into CotA laccase is a sequential process, with the type 1 copper center being the first to be reconstituted, followed by the type 2 and the type 3 copper centers. The copper reconstitution of holoCotA derivatives depleted in vitro with EDTA results in the complete recovery of the native conformation as monitored by spectroscopic, kinetic and thermal stability analysis. However, the reconstitution of copper to apo forms produced in cultures under aerobic and copper-deficient conditions resulted in incomplete recovery of biochemical properties of the holoenzyme. EPR and resonance Raman data indicate that, presumably, folding in the presence of copper is indispensable for the correct structure of the trinuclear copper-containing site.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app