JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Kir4.1 channels regulate swelling of astroglial processes in experimental spinal cord edema.

In glial cells, inwardly rectifying K(+) channels (Kir) control extracellular [K(+) ](o) homeostasis by uptake of K(+) from the extracellular space and release of K(+) into the microvasculature. Kir channels were also recently implicated in K(+) -associated water influx and cell swelling. We studied the time-dependent expression and functional implication of the glial Kir4.1 channel for astroglial swelling in a spinal cord edema model. In this CNS region, Kir4.1 is expressed on astrocytes from the second postnatal week on and co-localizes with aquaporin 4 (AQP4). Swelling of individual astrocytes in response to osmotic stress and to pharmacological Kir blockade were analyzed by time-lapse-two-photon laser-scanning microscopy in situ. Application of 30% hypotonic solution induced astroglial soma swelling whereas no swelling was observed on astroglial processes or endfeet. Co-application of hypotonic solution and Ba(2+) , a Kir channel blocker, induced prominent swelling of astroglial processes. In Kir4.1-/- mice, however, somatic as well as process swelling was observed upon application of 30% hypotonic solutions. No additional effect was provoked upon co-application with Ba(2+) . Our experiments show that Kir channels prevent glial process swelling under osmotic stress. The underlying Kir channel subunit that controls glial process swelling is Kir4.1, whereas changes of the glial soma are not substantially related to Kir4.1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app