Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Finite element modeling of electric field effects of TASER devices on nerve and muscle.

TASERs deliver electrical pulses that can temporarily incapacitate subjects. The goal of this paper is to analyze the distribution of currents in muscle layers and understand the electro-muscular incapacitation safety and efficacy of TASERs. The analyses describe skeletal muscle and motor nerve activation, cell electroporation and current and electric field distributions through skin, fat and muscle layers, under worst-case assumptions for TASER electrode penetration and separation. For the muscle layer, the analysis predicts worst-case current-density and field-strength values of 94 mA/cm(2) and 47 V/cm. Both values are higher than thresholds required for neuromuscular activation but significantly lower than levels needed for permanent cellular electroporation or tissue damage. The results indicate that TASERs are safe and effective in producing temporary subject incapacitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app