Add like
Add dislike
Add to saved papers

Heteroscedastic one-factor models and marginal maximum likelihood estimation.

In the present paper, a general class of heteroscedastic one-factor models is considered. In these models, the residual variances of the observed scores are explicitly modelled as parametric functions of the one-dimensional factor score. A marginal maximum likelihood procedure for parameter estimation is proposed under both the assumption of multivariate normality of the observed scores conditional on the single common factor score and the assumption of normality of the common factor score. A likelihood ratio test is derived, which can be used to test the usual homoscedastic one-factor model against one of the proposed heteroscedastic models. Simulation studies are carried out to investigate the robustness and the power of this likelihood ratio test. Results show that the asymptotic properties of the test statistic hold under both small test length conditions and small sample size conditions. Results also show under what conditions the power to detect different heteroscedasticity parameter values is either small, medium, or large. Finally, for illustrative purposes, the marginal maximum likelihood estimation procedure and the likelihood ratio test are applied to real data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app