JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron.

Nature 2007 November 16
A series of transcription factors critical for maintenance of the neural stem cell state have been identified, but the role of functionally important corepressors in maintenance of the neural stem cell state and early neurogenesis remains unclear. Previous studies have characterized the expression of both SMRT (also known as NCoR2, nuclear receptor co-repressor 2) and NCoR in a variety of developmental systems; however, the specific role of the SMRT corepressor in neurogenesis is still to be determined. Here we report a critical role for SMRT in forebrain development and in maintenance of the neural stem cell state. Analysis of a series of markers in SMRT-gene-deleted mice revealed the functional requirement of SMRT in the actions of both retinoic-acid-dependent and Notch-dependent forebrain development. In isolated cortical progenitor cells, SMRT was critical for preventing retinoic-acid-receptor-dependent induction of differentiation along a neuronal pathway in the absence of any ligand. Our data reveal that SMRT represses expression of the jumonji-domain containing gene JMJD3, a direct retinoic-acid-receptor target that functions as a histone H3 trimethyl K27 demethylase and which is capable of activating specific components of the neurogenic program.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app