JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis.

Phytochemistry 2008 Februrary
Glucosinolates are plant secondary metabolites that act as direct defenses against insect herbivores and various pathogens. Recent analysis has shown that methionine-derived glucosinolates are hydrolyzed/activated into either nitriles or isothiocyanates depending upon the plants genotype at multiple loci. While it has been hypothesized that tryptophan-derived glucosinolates can be a source of indole-acetonitriles, it has not been explicitly shown if the same proteins control nitrile production from tryptophan-derived glucosinolates as from methionine-derived glucosinolates. In this report, we formally test if the proteins involved in controlling aliphatic glucosinolate hydrolysis during tissue disruption can control production of nitriles during indolic glucosinolate hydrolysis. We show that myrosinase is not sufficient for indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate and requires the presence of functional epithospecifier protein in planta and in vitro to produce significant levels of indol-3-acetonitrile. This reaction is also controlled by the Epithiospecifier modifier 1 gene. Thus, like formation of nitriles from aliphatic glucosinolates, indol-3-acetonitrile production following tissue disruption is controlled by multiple loci raising the potential for complex regulation and fine tuning of indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app