JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

IGF-1 reduces inflammatory responses, suppresses oxidative stress, and decreases atherosclerosis progression in ApoE-deficient mice.

OBJECTIVE: Whereas growth factors, via their ability to stimulate vascular smooth muscle cell (VSMC) proliferation and migration, have been thought to play a permissive role in atherosclerosis initiation and progression, the role of insulin-like growth factor-1 (IGF-1) is unknown. Here we report for the first time that IGF-1 infusion decreased atherosclerotic plaque progression in ApoE-deficient mice on a Western diet.

METHODS AND RESULTS: ApoE-null mice (8 weeks) were infused with vehicle or recombinant human IGF-1 and fed a high-fat diet for 12 weeks. Analysis of aortic sinuses revealed that IGF-1 infusion decreased atherosclerotic plaque progression and macrophage infiltration into lesions. Furthermore, IGF-1 decreased vascular expression of the proinflammatory cytokines interleukin-6 and tumor necrosis factor-alpha, reduced aortic superoxide formation and urinary 8-isoprostane levels, and increased aortic pAkt and eNOS expression and circulating endothelial progenitor cells, consistent with an antiinflammatory, antioxidant, and prorepair effect on the vasculature.

CONCLUSIONS: Our data indicate that an increase in circulating IGF-1 reduces vascular inflammatory responses, systemic and vascular oxidant stress and decreases atherosclerotic plaque progression. These findings have major implications for the treatment of atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app