JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Visceral hyperalgesia induced by neonatal maternal separation is associated with nerve growth factor-mediated central neuronal plasticity in rat spinal cord.

Neuroscience 2007 November 10
Neonatal maternal separation (NMS) has been shown to trigger alterations in neuroendocrine, neurochemical and sensory response to nociceptive stimuli along the brain-gut axis. These alterations may be the result of a cascade of events that are regulated by neurotrophic factors. Nerve growth factor (NGF), a member of the neurotrophin family, is essential for the development and maintenance of sensory neurons and for the formation of central pain circuitry. The present study aimed to investigate whether NMS causes changes in neuronal plasticity and the relationship of these changes in plasticity with the expression of NGF and its high affinity tyrosine kinase receptor A (TrkA) in the lumbosacral spinal cord in adult rats. Male Wistar rat pups were either subjected to 180 min daily of NMS or not handled (NH) for 13 consecutive days. The expression of NGF and TrkA was examined in NH and NMS rats with or without colorectal distention (CRD) as determined by Western blot analysis and immunohistochemistry. The present results of Western blot analysis indicated NMS and CRD have a significant effect on NGF protein level in the lumbosacral spinal cord of rats. Assessments of optical densities revealed that NMS enhanced TrkA-ir fiber densities in laminae I-III and laminae V-VI of rats in both conditions with or without CRD. Double immunofluorescence revealed that TrkA co-expressed with calcitonin gene-related peptide (CGRP) in afferent fibers, while no significant difference in terms of the intensity of TrkA-ir in these fibers was found among groups. Quantitative analysis of TrkA-ir neurons indicated a significant interactive effect of NMS and CRD on the mean number of TrkA-ir neurons in laminae V-VI of rats, in which significant difference was found between NMS+CRD and NH+CRD. Double immunofluorescence of TrkA and Fos showed that CRD has a significant effect on TrkA expression in Fos-positive neurons in laminae V-VI and lamina X of rats, while no significant difference was found between NMS+CRD and NH+CRD. These results demonstrate that NMS induced alterations in NGF protein level and TrkA expression in adult rat spinal cord and indicate that NGF is a crucial mediator for the changes in neuronal plasticity that occur in NMS-induced visceral hyperalgesia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app