Add like
Add dislike
Add to saved papers

Probabilistic streamline q-ball tractography using the residual bootstrap.

NeuroImage 2008 January 2
Q-ball imaging has the ability to discriminate multiple intravoxel fiber populations within regions of complex white matter architecture. This information can be used for fiber tracking; however, diffusion MR is susceptible to noise and multiple other sources of uncertainty affecting the measured orientation of fiber bundles. The proposed residual bootstrap method utilizes a spherical harmonic representation for high angular resolution diffusion imaging (HARDI) data in order to estimate the uncertainty in multimodal q-ball reconstructions. The accuracy of the q-ball residual bootstrap technique was examined through simulation. The residual bootstrap method was then used in combination with q-ball imaging to construct a probabilistic streamline fiber tracking algorithm. The residual bootstrap q-ball fiber tracking algorithm is capable of following the corticospinal tract and corpus callosum through regions of crossing white matter tracts in the centrum semiovale. This fiber tracking algorithm is an improvement upon prior diffusion tensor methods and the q-ball data can be acquired in a clinically feasible time frame.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app