COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Apolipoprotein A-I but not high-density lipoproteins are internalised by RAW macrophages: roles of ATP-binding cassette transporter A1 and scavenger receptor BI.

Accumulation of lipid-loaded macrophages (foam cells) within the vessel wall is an early hallmark of atherosclerosis. High-density lipoproteins (HDL) and apolipoprotein A-I (apoA-I) can efficiently promote cholesterol efflux from macrophages. Therefore, the interaction of HDL and apoA-I with macrophages appears to be important in the initial steps of reverse cholesterol transport, i.e. the transport of excess cholesterol from foam cells to the liver. However, although several cellular apoA-I and HDL receptors and transporters have been identified, it is as yet controversial how these interactions lead to cholesterol efflux from foam cells. In this study, we show that RAW264.7 macrophages bind HDL and apoA-I in a compatible manner. Furthermore, cell surface biotinylation experiments revealed that apoA-I but not HDL is specifically internalised. Binding of HDL to macrophages is decreased by reducing the expression of scavenger receptor BI (SR-BI) with cyclic adenosine monophosphate (cAMP), acetylated low-density lipoprotein (acLDL) or RNA interference. In contrast, apoA-I cell association and internalisation is modulated in parallel with ATP-binding cassette transporter A1 (ABCA1) expression which is altered by stimulating cells with cAMP and acLDL or expressing short hairpin RNA (shRNA) against ABCA1. Consistent with this, cell surface trapping of ABCA1 with cyclosporin A (CsA) results in increased apoA-I binding but reduced internalisation. Furthermore, blocking apoA-I uptake inhibits cholesterol efflux to apoA-I but not to HDL. Taken together, these data suggest that apoA-I- but not HDL-mediated cholesterol efflux may involve retroendocytosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app