Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Electrospray ionization mass spectrometry monitoring of indigo carmine degradation by advanced oxidative processes.

The degradation of the dye indigo carmine in aqueous solution induced by two oxidative processes (H(2)O(2)/iodide and O(3)) was investigated. The reactions were monitored by electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS, and the intermediates and oxidation products characterized by ESI(-)-MS/MS. Both oxidative systems showed to be highly efficient in removing the color of the dye aqueous solutions. In the ESI(-)-MS of the indigo carmine solution treated with H(2)O(2) and H(2)O(2)/iodide, the presence of the ions of m/z 210 (indigo carmine in its anionic form, 1), 216, 226, 235, and 244 was noticeable. The anion of m/z 235 was proposed to be the unprecedented hydroperoxide intermediate 2 formed in solution via an electrophilic attack by hydroxyl and hydroperoxyl radicals of the exocyclic C=C bond of 1. This intermediate was suggested to be rapidly converted into the anionic forms of 2,3-dioxo-1H-indole-5-sulfonic acid (3, m/z 226), 2-amino-alpha-oxo-5-sulfo-benzeneacetic acid (4, m/z 244), and 2-amino-5-sulfo-benzoic acid (5, m/z 216). In the ESI(-)-MS of the indigo carmine solution treated with O(3), two main anions were detected: m/z 216 (5) and 244 (4). Both products were proposed to be produced via an unstable ozonide intermediate. Other anions in this ESI(-) mass spectrum were attributed to be [4 - H + Na](-) of m/z 266, [4 - H](2-) of m/z 121.5, and [5 - H](2-) of m/z 107.5. ESI-MS/MS data were consistent with the proposed structures for the anionic products 2-5.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app