JOURNAL ARTICLE

Lack of endothelium-derived hyperpolarizing factor (EDHF) up-regulation in endothelial dysfunction in aorta in diabetic rats

Gabor Csanyi, Istvan Lepran, Timea Flesch, Gyula Telegdy, Gyula Szabo, Zsofia Mezei
Pharmacological Reports: PR 2007, 59 (4): 447-55
17901574
It is not known whether the impairment of nitric oxide (NO)-dependent vasodilation of the aorta of diabetic rats is associated with any changes in the endothelial production of vasoactive prostanoids and endothelium-derived hyperpolarizing factor (EDHF). Therefore, we analyzed the contribution of NO, vasoactive prostanoids and EDHF to the decreased endothelium-dependent vasorelaxation in Sprague-Dawley rats at 4 and 8 weeks after diabetes mellitus induced by streptozotocin (STZ). The acetylcholine-induced (Ach) endothelium-dependent relaxation was significantly decreased in the thoracic aorta 8 weeks after the STZ-injection (Ach 10(-6) M: 73.1 +/- 7.4% and 56.7 +/- 7.9% for control and diabetic rats, respectively). The sodium nitroprusside-induced (NaNP) endothelium-independent vasodilation was also impaired in the diabetic rats (8 weeks after STZ) (NaNP 10(-8) M: 74.2 +/- 11.4% and 35.9 +/- 9.4% for control and diabetic rats, respectively). In contrast, the basal NO production, as assessed by the N omega-nitro-L-arginine methyl ester (L-NAME)-induced vasoconstriction was not modified in diabetes. Moreover, the amount of 6-keto-PGF(1 alpha) (stable metabolite of prostacyclin / prostaglandin I2 / PGI2 ), 12-L-hydroxy-5,8,10-heptadecatrienoic acid (12-HHT) and thromboxane B2 (TxB2 ) (stable metabolite of thromboxane A2 - TxA2) were significantly increased in the 8 weeks diabetic rat aorta. The EDHF-pathway did not change in the aortic endothelium during the development of STZ-induced diabetes. Our results indicate that STZ-induced diabetes mellitus did not modify the basal NO production, but induced the impairment of acetylcholine- and sodium nitroprusside-induced vasodilation in the thoracic aorta. In parallel with the impairment of NO-dependent vasodilation, the basal PGI2, 12-HHT and TxA2 synthesis were increased. The EDHF-pathway did not contribute to the endothelium-dependent relaxation either in control or diabetic aorta. The above alterations in the endothelial function may play an important role in the development of endothelial dysfunction and vascular complications of diabetes.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
17901574
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"