JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Shape dependence of band-edge exciton fine structure in CdSe nanocrystals.

Nano Letters 2007 November
The band-edge exciton fine structure of wurtzite CdSe nanocrystals is investigated by a plane-wave pseudopotential method that includes spin-orbit coupling, screened electron-hole Coulomb interactions, and exchange interactions. Large-scale, systematic simulations have been carried out on quantum dots, nanorods, nanowires, and nanodisks. The size and shape dependence of the exciton fine structure is explored over the whole diameter-length configuration space and is explained by the interplay of quantum confinement, intrinsic crystal-field splitting, and electron-hole exchange interactions. Our results show that the band-edge exciton fine structure of CdSe nanocrystals is determined by the origin of their valence-band single-particle wave functions. Nanocrystals where the valence-band maximum originates from the bulk A band have a "dark" ground-state exciton. Nanocrystals where the valence-band maximum is derived from the bulk B band have a "quasi-bright" ground-state exciton. Thus, the diameter-length configuration map can be divided into two regions, corresponding to dark and quasi-bright ground-state excitons. We find that the dark/quasi-bright ground-state exciton crossover is not only diameter-dependent but also length-dependent, and it is characterized by a curve in the two-parameter space of diameter and length.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app