Propofol reduces apoptosis and up-regulates endothelial nitric oxide synthase protein expression in hydrogen peroxide-stimulated human umbilical vein endothelial cells

Baohua Wang, Tao Luo, David Chen, David M Ansley
Anesthesia and Analgesia 2007, 105 (4): 1027-33, table of contents

BACKGROUND: Vascular endothelial cells play an important role in maintaining cardiovascular homeostasis. Oxidative stress is a critical pathogenic factor in endothelial cell damage and the development of cardiovascular diseases. In this study we evaluated the effects of propofol on oxidative stress-induced endothelial cell insults and the role of serine-threonine kinase Akt modulation of endothelial nitric oxide synthase (eNOS) as a mechanism of protection.

METHODS: Human umbilical vein endothelial cells were used as the experimental model. Hydrogen peroxide (H2O2, 100 microM) was used as the stimulus of oxidative stress. Study groups included 1) control; 2) cells incubated with H2O2 alone; 3) cells incubated with propofol (50 microM) alone; or 4) cells pretreated with propofol 50 microM for 30 min then co-incubated with H2O2. Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Trypan blue dye exclusion test. Cell apoptosis was evaluated by Hoechst 33258 staining. Caspase-3 activity was determined by the colorimetric CaspACE Assay System. Expressions of Akt, phospho-Akt, and eNOS were detected by Western blotting.

RESULTS: H2O2 decreased cell viability, induced apoptosis, and increased caspase-3 activity in human umbilical vein endothelial cells. Propofol significantly protected cells from H2O2-induced cell damage, apoptosis and decreased H2O2-induced increase in caspase-3 activity. Propofol treatment significantly increased eNOS expression compared to control and H2O2-stimulated cells. There was no significant difference in phospho-Akt (Ser 473 or Thr 308) expression among the groups.

CONCLUSIONS: Propofol 50 microM can reduce H2O2-induced damage and apoptosis in endothelial cells, by suppressing caspase-3 activity and by increasing eNOS expression via an Akt-independent mechanism.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"