Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Feature-preserving MRI denoising: a nonparametric empirical Bayes approach.

This paper presents a novel method for Bayesian denoising of magnetic resonance (MR) images that bootstraps itself by inferring the prior, i.e., the uncorrupted-image statistics, from the corrupted input data and the knowledge of the Rician noise model. The proposed method relies on principles from empirical Bayes (EB) estimation. It models the prior in a nonparametric Markov random field (MRF) framework and estimates this prior by optimizing an information-theoretic metric using the expectation-maximization algorithm. The generality and power of nonparametric modeling, coupled with the EB approach for prior estimation, avoids imposing ill-fitting prior models for denoising. The results demonstrate that, unlike typical denoising methods, the proposed method preserves most of the important features in brain MR images. Furthermore, this paper presents a novel Bayesian-inference algorithm on MRFs, namely iterated conditional entropy reduction (ICER). This paper also extends the application of the proposed method for denoising diffusion-weighted MR images. Validation results and quantitative comparisons with the state of the art in MR-image denoising clearly depict the advantages of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app