Add like
Add dislike
Add to saved papers

Whole-body diffusion-weighted imaging: technical improvement and preliminary results.

PURPOSE: To optimize the free-breathing whole-body diffusion-weighted imaging (WB-DWI) protocol by using the short TI inversion-recovery diffusion-weighted echo-planar imaging (STIR-DWEPI) sequence and the built-in body coil. Additionally, to evaluate the feasibility of tumor screening using high-resolution three-dimensional (3D) maximum intensity projection (MIP) images.

MATERIALS AND METHODS: The prescan procedure of STIR-DWEPI was modified using the data from 30 volunteers. During each exam, an optimized center frequency (CF) was used to minimize the slice offsets in consecutive scan stations. Prescan time was reduced from 50 seconds to 20 seconds with improved station profile. Total scan time was 30 minutes for five stations and 1.2 m coverage. A total of 30 patients with histologically-proven malignant disease were scanned under the final protocol using a built-in body coil. The image quality and the degree of background body signal suppression were assessed.

RESULTS: Free-breathing WB-DWI was 100% successfully performed in all patients, without slice misregistration, fat contamination, significant distortion, or nonuniformity. The reconstructed 3D-MIP images were adequate to depict malignant lesions in all 30 patients. The results of WB-DWI were found to be comparable to those of single-photon emission computed tomography (SPECT) and positron emission tomography (PET).

CONCLUSION: Stable and high-resolution WB-DWI is feasible using the technical improvements described in this study. WB-DWI might have important clinical value for the detection of primary and metastatic malignancies within the whole body. The potential for diagnosis and therapeutic assessment of tumors should be further assessed in a larger patient cohort.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app