Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake.

Biomaterials 2007 December
Poly(poly(ethyleneglycol) monomethacrylate) (P(PEGMA))-grafted magnetic nanoparticles (MNPs) were successfully prepared via a solvent-free atom transfer radical polymerization (ATRP) method. The macroinitiators were immobilized on the surface of 6.4+/-0.8 nm Fe(3)O(4) nanoparticles via effective ligand exchange of oleic acid with 3-chloropropionic acid (CPA), which rendered the nanoparticles soluble in the PEGMA monomer. The so-obtained P(PEGMA)-grafted MNPs have a uniform hydrodynamic particle size of 36.0+/-1.2 nm. The successful grafting of P(PEGMA) on the MNP surface was ascertained from FTIR and XPS analyses. The uptake of the MNPs by macrophage cells is reduced by two-orders of magnitude to <2 pg Fe/cell after surface grafting with P(PEGMA). Furthermore, the morphology and viability of the macrophage cells cultured in a medium containing 0.2 mg/mL of P(PEGMA)-grafted MNPs were found similar to those of cells cultured without nanoparticles, indicating an absence of significant cytotoxicity effects. T(2)-weighted magnetic resonance imaging (MRI) of P(PEGMA)-grafted MNPs showed that the magnetic resonance signal is enhanced significantly with increasing nanoparticle concentration in water. The R(1) and R(2) values per millimole Fe, and R(2)/R(1) value of the P(PEGMA)-grafted MNPs were calculated to be 8.8 mm(-1)s(-1), 140 mm(-1)s(-1), and 16, respectively. These results indicate that the P(PEGMA)-grafted MNPs have great potential for application in MRI of specific biotargets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app