Add like
Add dislike
Add to saved papers

Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid.

The catalytic activities of FexPt100-x alloy nanoparticles at different compositions (x=10, 15, 42, 54, 58, and 63) in the electro-oxidation of formic acid have been investigated by using cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS). It was observed that the electrocatalytic performance was strongly dependent on the FePt particle composition. In chronoamperometric measurements, the alloy particles at x approximately 50 showed the highest steady-state current density among the catalysts under study and maintained the best long-term stability. In addition, on the basis of the anodic peak current density, onset potentials, and the ratios of the anodic peak current density to the cathodic peak current density in CV studies, the catalytic activity for HCOOH oxidation was found to decrease in the order of Fe42Pt58>Fe54Pt46 approximately Fe58Pt42>Fe15Pt85>Fe10Pt90>Fe63Pt37. That is, within the present experimental context, the alloy nanoparticles at x approximately 50 appeared to exhibit the maximum electrocatalytic activity and stability with optimal tolerance to CO poisoning. Consistent responses were also observed in electrochemical impedance spectroscopic measurements. For the alloy nanoparticles that showed excellent tolerance to CO poisoning, the impedance in the Nyquist plots was found to change sign from positive to negative with increasing electrode potential, suggesting that the electron-transfer kinetics evolved from resistive to pseudoinductive and then to inductive characters. However, for the nanoparticles that were heavily poisoned by adsorbed CO species during formic acid oxidation, the impedance was found to be confined to the first quadrant at all electrode potentials. The present work highlights the influence of the molecular composition of Pt-based alloy electrocatalysts on the performance of formic acid electro-oxidation, an important aspect in the design of bimetal electrocatalysts in fuel cell applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app