JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes.

Studies on the physiological roles of the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP) have largely focused on its insulinotropic action and ability to regulate beta-cell mass. In previous studies on the stimulatory effect of GIP on adipocyte lipoprotein lipase (LPL), a pathway was identified involving increased phosphorylation of protein kinase B (PKB) and reduced phosphorylation of LKB1 and AMP-activated protein kinase (AMPK). The slow time of onset of the responses suggested that GIP may have induced release of an intermediary molecule, and the current studies focused on the possible contribution of the adipokine resistin. In differentiated 3T3-L1 adipocytes, GIP, in the presence of insulin, increased resistin secretion through a pathway involving p38 mitogen-activated protein kinase (p38 MAPK) and the stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK). The other major incretin hormone, glucagon-like peptide-1 (GLP-1), exhibited no significant effects. Chronic elevation of circulating GIP levels in the Vancouver Diabetic Fatty (VDF) Zucker rat resulted in increases in circulating resistin levels and activation of p38 MAPK or SAPK/JNK in epididymal fat tissue, suggesting the existence of identical pathways in vivo as well as in vitro. Administration of resistin to 3T3-L1 adipocytes mimicked the effects of GIP on the PKB/LKB1/AMPK/LPL pathway: increasing phosphorylation of PKB, reducing levels of phosphorylated LKB1 and AMPK, and increasing LPL activity. Knockdown of resistin using RNA interference attenuated the effect of GIP on the PKB/LKB1/AMPK/LPL pathway in 3T3-L1 adipocytes, supporting a role for resistin as a mediator.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app