Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice

Lan Zhou, Jill A Rafael-Fortney, Ping Huang, Xinyu S Zhao, Georgiana Cheng, Xiaohua Zhou, Henry J Kaminski, Liping Liu, Richard M Ransohoff
Journal of the Neurological Sciences 2008 January 15, 264 (1-2): 106-11
To address whether mdx mice with haploinsufficiency of utrophin (mdx/utrn+/-) develop more severe skeletal muscle inflammation and fibrosis than mdx mice, to represent a better model for Duchenne muscular dystrophy (DMD), we performed qualitative and quantitative analysis of skeletal muscle inflammation and fibrosis in mdx and mdx/utrn+/- littermates. Inflammation was significantly worse in mdx/utrn+/- quadriceps at age 3 and 6 months and in mdx/utrn+/- diaphragm at age 3 but not 6 months. Fibrosis was more severe in mdx/utrn+/- diaphragm at 6 months, and at this age, mild fibrosis was noted in quadriceps of mdx/utrn+/- but not mdx mice. The findings indicate that utrophin compensates, although insufficiently, for the effects of dystrophin loss with regard to inflammation and fibrosis of both quadriceps and diaphragm muscles in mdx mice. With more severe muscle dystrophy than mdx mice and a longer life span than utrophin-dystrophin-deficient (dko) mice, mdx/utrn+/- mice provide a better mouse model for testing potential therapies for muscle inflammation and fibrosis associated with DMD.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"