Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Strain tuning of the photocurrent spectrum in single-wall carbon nanotubes.

Nano Letters 2007 October
The effect of uniaxial strain on the photocurrent spectrum of semiconducting single-wall carbon nanotubes is measured. The energy of the lowest-lying free electron transition is observed to shift with strain as predicted by a simple noninteracting model. The higher-order transitions also shift with strain, but being excitonic, their strain dependence differs from the predictions for the free carrier states. An anomalous photocurrent increase is also observed near the ground-state transition and is attributed to the formation of optically active defect states within the nanotube band gap.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app